
2086 WWW.CROPS.ORG CROP SCIENCE, VOL. 48, NOVEMBER–DECEMBER 2008

RESEARCH

Theory for predicting selection response in plant improve-
ment programs has been very well developed for noninbred 

progeny (Empig et al., 1981; Cockerham and Matzinger, 1985; 
Nyquist, 1991; Holland et al., 2003). Selection response has nearly 
always been defi ned as the change in mean value of noninbred 
individuals in the population resulting from selection among var-
ious types of candidates or candidate families, including full-sib 
families, half-sib families, and/or progeny developed by self-pol-
lination. Cockerham and Matzinger (1985) went one step further 
and predicted improvement in inbred lines developed directly 
from selected self-pollinated progeny lines. However, methods 
for predicting response to selection in plants have not been devel-
oped for inbred off spring derived from an improved population; 
that is, what impact will a particular selection method have on the 
performance of inbred lines derived from an improved population 
or on the rate of inbreeding depression in an improved popula-
tion? If response to selection could be predicted for noninbred 
individuals (F = 0) and inbred individuals (F = 1) in an improved 
population, a prediction for the change in inbreeding depression 
would be readily obtainable as the diff erence in response rates 
between noninbred individuals and inbred individuals in the 
improved population. Such theory is needed for species in which 
hybrid cultivars are important, such as maize (Zea mays L.). The 
objective of this paper was to develop theory to predict the change 
in mean value of noninbred individuals and inbred individuals in 
a recombined population for individual, half-sib, and self-progeny 
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selection and to use this theory to predict the expected 
change in inbreeding depression rate resulting from one 
cycle of selection.

MATERIALS AND METHODS

Pedigree
A generalized pedigree for formation of candidate families and 

passing of gametes to recombined individuals is shown in Fig. 1. 

Selection-candidate families were composed of half-sib or self-

pollinated descendants of a single founder individual. Founder 

individuals were designated as P
m
 for male and P

f
 for female 

gametes that unite to form recombined individuals (R in Fig. 1) 

following selection. Predicted gains were developed to include 

formation of candidate families with any number of generations 

of descent from the founder individual, P
m
 or P

f
, including zero 

generations if an individual was evaluated directly as a candidate 

for selection (mass selection). Development of candidate fami-

lies could include a combination of self- and open pollination. 

For example, the founder of a family could be self-pollinated 

to obtain an S
1
 line, and the S

1
 line could then be planted ear-

to-row and pollinated by the base population to form a half-sib 

family. Individuals in the recombined population, represented 

by individual R, were the result of a union of a male gamete, 

descended from individual P
m
, and a female gamete, descended 

from individual P
f
. Gametes uniting to form the zygote of indi-

vidual R could have been directly obtained from individuals P
m
 

and P
f
, or they could have been generated by descendants of P

m
 

and P
f
, that is, from remnant seed of the candidate family. All 

generations between individuals P
m
 or P

f
 and R were assumed 

to be either generations of self-pollination or open pollination. 

If the line of descent includes open pollination, it was assumed 

that one gamete descended directly through the line of descent 

between P
m
 or P

f
 and R and one gamete was sampled randomly 

from the reference population in each generation. Individual R 

was used as the basis to predict response in noninbred individu-

als. Individual R was subsequently self-pollinated to produce 

self-pollinated descendants, D, which were used as the basis to 

predict response in inbred individuals.

Genetic Model 
The assumed model for this investigation was a single locus 

model (Fisher, 1918; Harris, 1964):

g
ij
 = μ + α

i
 + α

j
 + δ

ij

where g
ij
 = genotypic value of individual with genotype A

i
A

j
, 

μ  = population mean, α
i
 = additive eff ect of ith allele, and 

δ
ij
 = dominance deviation.

From a single-locus genetic model, Harris (1964) extended 

genotypic covariances to any level of inbreeding. In the deri-

vation of covariances, Harris (1964) defi ned additive eff ects of 

alleles, α
i
 and α

j
, strictly with respect to a non-inbred reference 

population, meaning that solutions for the additive eff ects were 

obtained from Hardy–Weinberg genotypic frequencies. In 

contrast, Fisher (1941) defi ned additive eff ects given the actual 

genotypic frequencies in the population, which depend on the 

inbreeding level. Because of the way Harris (1964) defi ned addi-

tive eff ects, the expected values of additive eff ects at all inbreed-

ing levels and dominance eff ects in noninbred individuals are 

zero, that is, E[α
i
] = 0 and E[δ

ij
] = 0. However, among a sample 

of inbred individuals, the expectation of dominance deviations 

is equivalent to a weighted sum of homozygous dominance

deviations, [ ]ii i ii
i

E p h= =∑δ δ  (where p
i
 = frequency of

ith allele), which is nonzero. Cockerham (Cockerham, 1983; 

Wright and Cockerham, 1986) defi ned the expectation of 

homozygous dominance deviations as inbreeding depression. 

From the expectations of noninbred and inbred individuals, it 

can be seen that Cockerham’s defi nition of inbreeding depres-

sion is equivalent to the mean of inbred individuals minus the 

mean of noninbred individuals:

i j ij
⎡ ⎤+ + + =⎢ ⎥⎣ ⎦Ε μ α α δ μ  for noninbred individuals

[ ]2 i ii i ii
i

p h+ + = + = +∑Ε μ α δ μ δ μ  for inbred 

individuals

and

[ ]2 ii i j ijE hι
⎡ ⎤+ + − + + + =⎢ ⎥⎣ ⎦Ε μ α δ μ α α δ

Covariances between noninbred individuals require only the 

two covariance components, σ2
A
 and σ2

D
, whereas up to fi ve 

components are required for covariances between inbred indi-

viduals (Harris, 1964). The three additional components 

required for inbred relatives, D
1
, D*

2
, and H*, are related directly 

to the homozygous dominance deviations, the basis for inbreed-

ing depression (Table 1). The component D*
2
 is the variance 

of the homozygous dominance deviations, which parallels the 

dominance variance, σ2
D
, except that D*

2
 is defi ned strictly 

Figure 1. General representation of pedigree structure of male 

and female candidates and recombined individuals. Individuals 

P
m
 and P

f
 were male and female candidates or originating parents 

of candidate families. Individuals labeled C were individuals within 

candidate families that were evaluated phenotypically for selection 

(selection units). Individual R was a descendant of the original 

parents, P
m
 and P

f
, of two selected families. Individual R was formed 

from the union of a female gamete, derived directly from individual 

P
f
 or from a descendant of P

f
 (i.e., from remnant seed) and a male 

gamete derived from individual P
m
 or from a descendant of P

m
. Each 

arrow represents a line of descent that can include more than one 

generation and can represent the inheritance of two gametes, as in 

self-pollination, or a single gamete in the case of half-sib offspring of 

an individual. In the half-sib case, the gamete not shown in the fi gure 

was always assumed to be randomly sampled from the reference 

population. Individual D was a direct descendant of R obtained by 

self-pollination without selection.
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(Harris, 1964; Cockerham, 1971; Table 2). 

Identity-by-descent probabilities are nonmu-

tually exclusive probabilities of combinations 

of two, three, or four alleles being identical by 

descent and were described in detail by Cocker-

ham (1971) as functions of 15 mutually exclusive 

identity states. The probabilities θ
XY

, F
X
, and F

Y
 

are the more commonly known coancestry coef-

fi cient between X and Y (θ
XY

) and the inbreed-

ing coeffi  cients of X and Y (F
X
 and F

Y
). Lange 

(2002) provided a highly accessible description 

for a set of 15 mutually exclusive identity states 

for sets of up to four alleles, which included a 

straightforward graphical representation, but 

Lange’s (2002) system did not include the eight nonmutually 

exclusive identity-by-descent probabilities needed for covari-

ances of inbred relatives.

Genetic Gain Equation
A prediction equation was derived explicitly from the condi-

tional normal distribution shown in the Appendix to maintain 

explicit accounting of candidate and off spring means, because 

population means may be aff ected by inbreeding depression. 

Genetic values were expressed as deviations from candidate 

and off spring population means, which account for inbreeding 

depression, in Appendix Eq. [A3]. Equation [A3] was reduced 

to genetic gain with the selection diff erential, S, representing 

the deviation of the mean of selected candidates from the mean 

of all candidates and ΔG representing the deviation of off spring 

of selected candidates from the expected mean of off spring 

derived from unselected candidates (Eq. [A4]):

( )

C,O C,O

2 2
P CG(C) E(C)

G pS piΔ = =
+

σ σ
σσ σ

 [2]

where σ
C,O

 = covariance between candidates and off spring, σ2
P(C)

 

= phenotypic variance of candidates, σ2
G(C)

 = genotypic variance 

of candidates, σ2
E(C)

 = environmental variance of candidates, p = 

parental control, S = selection diff erential, and i = standardized 

selection diff erential. The genetic portion of the predicted gain 

equation required two genotypic covariances, the covariance 

between candidates and off spring, σ
C,O

, in the numerator and 

the genotypic variance of candidates in the denominator.

Covariance between Candidates and Offspring
The covariance in the numerator of genetic gain, σ

C,O
, required 

the genotypic covariance between candidate individuals, C and 

recombined off spring individuals, D or R in the generalized ped-

igree in Fig. 1. The genotypic covariance between individuals C 

and D or R in turn required computation of up to eight iden-

tity-by-descent probabilities. Probabilities were computed by the 

expansion method of Cockerham (1971, 1983) in which prob-

abilities are expanded through a pedigree from descendants, C, 

D, and R, to common ancestors P
m
 and P

f
 (Fig. 1). As described 

in the “Pedigree” section, above, expansions were developed 

to include any number of selfi ng and outcrossing generations 

between the progenitor of the candidate family, P, and candidate 

family members C or recombined off spring R (Fig. 1).

The coancestry coeffi  cient, θ
CD

, was expanded fi rst 

because it appeared in the simplifi cation of several other 

for dominance deviations in individuals with alleles identical 

by descent. Dominance deviations exist between alleles that 

are identical by descent because the additive eff ects are defi ned 

with respect to noninbred individuals and, hence, do not predict 

the genotypic value of an inbred individual in Harris’s (1964) 

parameterization. The component H* is equivalent to the sum 

(over loci) of homozygous dominance deviations, squared, and 

in general contributes little to the covariances between related 

individuals (Cockerham, 1983). The term D
1
 is the covariance 

between additive eff ects and homozygous dominance deviations 

and is unique among genotypic covariance components in that 

it can be positive or negative. Interpretation of the component 

D
1
 is diffi  cult, but perhaps the most important implication of 

the component is its contribution to the covariance between 

inbred and outbred performance (Edwards and Lamkey, 2002, 

2003). Collecting all fi ve components into a single expression for 

the covariance between individuals X and Y produced (Harris, 

1964; Cockerham, 1983; Cockerham and Weir, 1984; Wright 

and Cockerham, 1986)

( ) ( )
( ) ( )

2 2
XY A DX+Y XY

* *
1 2 X YXY XY XY X Y

Cov , 2

2

X Y

D D F F H

= + −

+ + + + −i

θ σ Δ δ σ

γ γ δ Δ
 [1]

where θ
XY

, 
X Y+Δ , 

XY
δ , 

XY
γ , 

XY
γ , 

X YiΔ , F
X
, and F

Y
 are 

identity-by-descent probabilities for two, three, or four alleles 

Table 1. Genotypic covariance components for inbred relatives, their defi ni-

tions, and coeffi cients in the general genotypic covariance between individu-

als X and Y.

Component Expectation Coeffi cient Description

σ2
A

Σ
i
p

i
α2

i
2θ

XY
Additive variance

σ2
D

Σ
i
p

i
p

j
δ2

ij ( )X Y XY
2 + −Δ δ

Dominance variance

D
1 Σ

i
p

i
α

i
δ

ii ( )XY XY
2 +γ γ

Covariance between additive effects 

and homozygous dominance deviations

D*
2 Σ

i
p

i
δ2

ii 
− (Σ

i
p

i
δ2

ii
)2

XY
δ Variance of homozygous dominance 

deviations

H*
(Σ

i
p

i
δ2

i i
)2

X YX Y
F F−iΔ Sum of homozygous dominance devia-

tions (inbreeding depression), squared

Table 2. Identity-by-descent probabilities required for covari-

ances between inbred relatives for two individuals. Individual 

X had alleles X
1
 and X

2
 and individual Y had alleles Y

1
 and Y

2
. 

Each identity-by-descent probability is an average probabil-

ity of identity of the allelic equivalencies shown in the second 

column. Notation for components was obtained from Cock-

erham (1971).

Measure Equivalent sets of alleles

F
X X

1
 ≡ X

2

F
Y Y

1
 ≡ Y

2

θ
XY

X
1
 ≡ Y

1
 or  X

1
 ≡ Y

2
  or  X

2
 ≡ Y

1
 or  X

2
 ≡ Y

2

XY
γ X

1
 ≡ X

2
 ≡ Y

1
 or  X

1
 ≡ X

2
 ≡ Y

2

XY
γ Y

1
 ≡ Y

2
 ≡ X

1
 or  Y

1
 ≡ Y

2
 ≡ X

2

X YiΔ X
1
 ≡ X

2
, Y

1
 ≡ Y

2

X Y+Δ X
1
 ≡ Y

1
, X

2
 ≡ Y

2
 or  X

1
 ≡ Y

2
, X

2
 ≡ Y

1

XY
δ X

1
 ≡ X

2
 ≡ Y

1
 ≡ Y

2
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expansions. Individuals C and D (Fig. 1) were both descen-

dants of individual P, with individual P being the last 

common ancestor. Equation [A6] was used to obtain

( ) R C1
CD CR PP2

h h+
= =θ θ θ  where h

R
 and h

C 
are the number of 

outcross generations between the common ancestor P and 

descendants R and C, respectively. The coancestry of an indi-

vidual with itself was θ
PP

 = ½(1 + F
P
), which produced (Cock-

erham, 1983)

( ) ( ) ( )R C 1
1

CD CR P 0 P2 1 1
h h

F F
+ +

= = + = +θ θ θ  [3]

where ( ) 1
1

0 2
R Ch h+ +

=θ . The term θ
0
 can be interpreted as the 

coancestry between C and D if individual P was not inbred.

The three-allele measure, 
CD

γ , was expanded next because 

it appeared in two subsequent expansions. If individual C was 

an outcross, 
CD CR

0= =γ γ . For candidates developed by self-

pollination, 
CD

γ  was fi rst expanded from individual D to P, 

using Eq. [A5] and [A6] to obtain ( ) R1
2CD CR CP

h
= =γ γ γ . 

The expansion of 
CP

γ  from C to P, assuming C was derived 

from P by self-pollination with no outcross generations, was 

obtained from an expression given by Cockerham (1983), 

( )1
' 2tgg t gF F= +γ . Individuals P and C were substituted 

into Cockerham’s expression with generation t = g′ for indi-

vidual P and generation g for individual C which resulted in 

( )1
P C2CP

F F= +γ . Substituting 
CP

γ  into the expression for 

CD
γ  and 

CR
γ

 
resulted in:

( ) ( )

( ) ( ) ( )

R

R C

1 1
P C2 2CD CR

1
1

P C 0 P C2

h

h h

F F

F F F F
+ +

= = +

= + = +

γ γ

θ
 [4]

(using h
C
 = 0 because C was derived by self-pollination).

The remaining descent measures, 
CD

γ , 
C DiΔ , 

 C D+Δ , and 

CD
δ , which were functions of two alleles in individual D, were 

expanded by Eq. [A7] with individual D as the descendant, D, 

individual C as the constant individual X and individual R as 

individual A in Eq. [A7]:

( ) ( ) CR D R D CR
 CD

R

1

1

F F F

F

− + −
=

−

φ φ
φ  [5]

Because individual R was noninbred, F
R
 = 0 and 

 CR
0=φ , which 

resulted in a simplifi ed expansion from D to R: D  CRCD 
F=φ φ . 

The measure 
 CD
φ  represents any descent measure that was a 

function of a pair of alleles in D. Substituting specifi c descent 

measures for the generic measures, 
 CD
φ  and  CRφ , using the 

reduced form of Eq. [A7] and Table A1, resulted in the follow-

ing expressions:

D C C D
,F F=iΔ

( )D CR 0 D PCD
1 ,F F F= = +γ θ θ

( )

C D

D CR
0 D P C

0 if C is outcrossed

if C is self-pollinated
F

F F F

+ =

⎧⎪⎪= ⎨⎪ +⎪⎩

Δ

γ
θ

 [6]

and

( )

CD

D CR
0 D P C

0 if C is outcrossed

if C is self-pollinated
F

F F F

=

⎧⎪⎪= ⎨⎪ +⎪⎩

δ

γ
θ

 [7]

Four allele descent measures for the relationship between 

C and D were substituted into the general covariance between 

two individuals (Cockerham and Weir, 1984; Cockerham, 1983; 

Wright and Cockerham, 1986) to obtain covariances between 

individuals C and D for three types of candidates: individuals 

(individual C is equivalent to P
m
 or P

f
), half-sib families (C is an 

outcross), and families derived by self-pollination. Formulas for 

individuals as candidates were obtained directly from the case 

in which candidate families were developed by self-pollination 

with F
C
 = F

P
. In the covariance between individuals C and D, 

the terms σ2
D
 and H* canceled from the genotypic covariance 

between C and D because 
 C D  CD+ =Δ δ  and D C C D

F F=iΔ . 

Inbred individuals C and D were assumed to be derived by self-

pollination, so substitution of values of F
D
 and F

C
 must be 

only those values attainable by self pollination, F
C
 = 1 − (1/2)

g(1 − F
P
) and F

D
 = 1 – (1/2)g (noting that F

R
 = 0). The inbreed-

ing level of individual P, F
P
, however, could take on any value.

Coeffi  cients for individual components in the genotypic 

covariance between candidates and off spring, σ
C,O

, are summa-

rized in Table 3 for general inbreeding levels of individuals P, C, 

and D. The predicted change in inbreeding depression rate, that 

is, selection response for inbreeding depression, was predicted 

by subtracting the predicted change in noninbred individuals 

(F = 0) from predicted change in inbred individuals (F = 1).

Variance of Candidates
The genotypic variance, σ2

G(C)
, of candidates took slightly dif-

ferent forms for diff erent types of candidates. For individuals, 

the variance reduced to a function of the candidate individuals 

inbreeding coeffi  cient (Cockerham, 1983):

( ) ( )

( )

2 2 2
G(C) C A C D

* *
C 1 C 2 C C

1 1

4 1

F F

F D F D F F H

= + + −

+ + + −

σ σ σ
 [8]

General expressions for genotypic variances of candidate 

family means are given in the Appendix for up to three gen-

erations of self-pollination and or outcrossing to produce ade-

quate seed quantities for replicated evaluation experiments. As 

the number of individuals sampled within a family in the fi rst 

generation increases, the genotypic variance of a family mean 

approaches the covariance between two individuals with the 

last common ancestor being the single founder-individual of 

the family (individual P
m
 or P

f
 in Fig. 1; Eq. [A8–A10]). The 

asymptotic genotypic variance for an outbred family derived 

from h generations of outcrossing from a single founder with 

inbreeding coeffi  cient F
P
 is derived from Eq. [A8]:

( ) ( ) ( )22 21
P A2G C 1

h
F= +σ σ  [9]

If the family was developed by a combination of self- and 

open pollination, the same formula can be used with h equal 

to the number of outcross generations. For example, if an indi-

vidual is self-pollinated to produce an S
1
 line, and the S

1
 line is 

subsequently planted ear-to-row, emasculated, and allowed to 

open pollinate with the base population as a pollinator, there 

were two generations of increase, but only one generation of 

outcrossing, so h = 1.

Cockerham (1983) gave covariances between individu-

als derived exclusively from self-pollination. The asymptotic 

genotypic variance of a family mean with individuals with 
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inbreeding coeffi  cient F
C
 derived from a single founder with 

inbreeding coeffi  cient F
P
 was (Cockerham, 1983) as follows:

( ) ( )
( )
( )

( )

( )
( )

( )
( )

2

2 2 2
P A C P 1G C

2 2

C P P C* *
P 2

P P

1
1 2

1

1

2 1 1

c
D

p

F
F F F D

F

F F F F
F D H

F F

−
= + + + +

−

⎡ ⎤− −⎢ ⎥+ + +⎢ ⎥− −⎢ ⎥⎣ ⎦

σ σ σ

 [10]

Common Selection Methods
Predicted response to selection was obtained for nine common 

recurrent selection programs summarized in Tables 4 and 5. 

For each method, the numerator of predicted response to selec-

tion was obtained by multiplying coeffi  cients from Table 3 by 

the quantity 2pθ
0
 from Table 5. Values for the number of out-

cross generations, h, and for number of parents on which selec-

tion was applied, p, were obtained by determining appropriate 

numbers of self- and outcross generations in the gen-

eral pedigree in Fig. 1. For mass selection, selection was 

applied directly to individuals P
m
 and P

f
 in Fig. 1, so 

there were no outcross generations. Recombination was 

accomplished by the random exchange of pollen among 

P
m
 or P

f
 and contemporaries. Response was measured 

in individual R. Selection was on a single parent (i.e., 

no selection on the male parent in Eq. [A3]) if parents 

were selected after pollination (p = 1 in Table 5). For 

half-sib methods, candidate families originated from a 

single open-pollinated individual. Alternatively, a single 

individual was self-pollinated to obtain an S
1
 line, which 

was planted in isolation, emasculated, and harvested in 

bulk to obtain a larger seed quantity of seed (S
1
–topcross 

method). The minimum of outcross generations for 

half-sib methods was with the S
1
–topcross method with 

S
1
 seed used for recombination. In this method, the only 

outcross in recombination of selected families occurred 

when S
1
 individuals were mated with S

1
 individuals from 

other selected, but unrelated, families. Tables 4 and 5 list 

several common recurrent selection methods based on 

half-sib and self-pollinated families. However, expres-

sions in Table 3 can be applied to a much wider set of 

possible methods by using the same logic as that used to 

obtain parameter values in Table 5.

RESULTS AND DISCUSSION
Most previous treatments of predicted genetic gain have 
not done enough to address inbreeding in either candi-
dates or recombined off spring of selected parents (Empig et 
al., 1981; Fehr, 1987; Nyquist, 1991; Holland et al., 2003). 
Wright and Cockerham (1986) provided a detailed analysis 
of selection among candidates derived by self-pollination, 
but genetic gain was limited to the direct descendents of 
the candidates arising from additional generations of self-
pollination. The results presented here extend genetic gain 
to include any level of inbreeding among candidates of 
selection and any level of inbreeding among recombined 
off spring of selected candidates. Extension to multiple lev-
els of inbreeding in recombined off spring leads to a direct 
method to estimate the impact of selection on inbreeding 

Table 3. Coeffi cients required for computation of the covariance, 

σ
C,O

, between candidates (C in Fig. 1) and offspring (D in Fig. 1) in 

the numerator of predicted genetic gain. Coeffi cients for outcrossed 

candidates, self-pollinated candidates, and individuals (P
m

 and P
f
) 

with two levels of inbreeding of offspring (D in Fig. 1) were expressed 

as functions of inbreeding coeffi cients of individuals. The covari-

ance, σ
C,O

, between individuals C and D was obtained by multiplying 

coeffi cients in the Table for each variance component by 2θ
0
. It was 

assumed that individuals C and D were developed by self-pollination, 

and hence their inbreeding coeffi cients must satisfy F
C
 = 1 – (1/2)g(1 – 

F
P
) and F

D
 = 1 – (1/2)g. The inbreeding coeffi cient F

P
 for individuals P

m
 

and P
f
 could take any value from zero to 1.

Component† Case General F
D
 = 1 F

D
 = 0 Difference

σ2
A

All 1 + F
P

1 + F
P

1 + F
P

0

D
1

Outcross F
D
(1 + F

P
) 1 + F

P
0 1 + F

P

Self F
C
 + F

P
 + F

D
(1 + F

P
) 1 + F

C
 + 2F

P
F

C
 + F

P
1 + F

P

Individual 2F
P
 + F

D
(1 + F

P
) 1 + 3F

P
2F

P
1 + F

P

D
2
* Outcross 0 0 0 0

Self 1/
2
F

D
(F

C
 + F

P
) 1/

2
(F

C
 + F

P
) 0 1/

2
(F

C
 + F

P
)

Individual F
D
F

P
F

P
0 F

P

†Genotypic covariance components are defi ned in Table 1.

Table 4. Descriptions of common recurrent selection programs.

Method† Candidates Recombined

Mass–BP Individuals selected before pollination Individual

Mass–AP Individuals selected after pollination (selection only on female) Individual

Half-sib–1 Half-sib progeny of one individual (1 generation of outcrossing) Remnant half-sib seed

Half-sib–2 Half-sib progeny of one individual planted ear to row, topcrossed to 

 population and harvested in bulk (2 generations of outcrossing)

Remnant half-sib seed from second generation 

(same generation as tested)

Half-sib–TT S
1
–line (self-progeny of one individual) planted ear to row, topcrossed to 

population and harvested in bulk

Remnant topcross seed

Half-sib–TS S
1
–line (self-progeny of one individual) planted ear to row, topcrossed to 

population and harvested in bulk

Remnant self-pollinated seed

Modifi ed ear to row Half-sib progeny of a single individual Remnant half-sib seed (same season)

Self-progeny–1 Self-progeny of a single individual Remnant self-pollinated seed

Self-progeny–2 Self-progeny of a single individual planted ear-to-row, self pollinated, and 

harvested in bulk (i.e., second generation self-progeny)

Remnant self-pollinated seed

†BP, before pollination; AP, after pollination; TT, topcrossed candidate, remnant topcross seed; TS, topcrossed candidate, remnant self-pollinated seed.
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depression by comparison of response in 
noninbred off spring of selected candi-
dates and inbred off spring derived from 
the improved population. Even with the 
extension to any inbreeding level, the 
genotypic covariances in the genetic gain 
equation summarized in Tables 3 and 6 
reduced to three equations correspond-
ing to three classes of selection candidates, 
individuals, half-sib families, and self-pol-
linated families. Furthermore, the three 
covariance expressions in the numerator 
and denominator of genetic gain reduced 
to functions of only two types of identity 
probabilities, the inbreeding coeffi  cient 
and the coancestry coeffi  cient, which are 
functions of only 2 alleles. In contrast, the 
completely general genotypic covariance 
between two individuals is a function of 
fi ve distinct types of identity-by-descent 
probabilities (F, θ, γ, 

X+Y
Δ , 

XY
δ , 

X YiΔ ), 
which are functions of identity of up to four alleles. At the 
same time that this rather remarkable level of simplifi cation 
was obtained, the fi nal solution was quite broadly applica-
ble to any selection method with a pedigree corresponding 
to the pedigree in Fig. 1 and meeting certain criteria: (i) 
P

m
 and P

f
 are unrelated, (ii) there are no pedigree loops in 

development of candidate families or individual R, and (iii) 
candidates and individual R are developed by some com-
bination of self-pollination and random outcrossing (ran-
dom sampling of gametes from the base population). Even 
within these seemingly restrictive conditions, the general 
pedigree in Fig. 1, including general inbreeding levels for 
P

m
 and P

f
, can be used to model a tremendous array of 

selection methods, including methods in Table 4 and any 
others within the imagination of the breeder.

Predicted response to selection was a function of inten-
sity, environmental variance(s), experimental design, and 
pedigree structure of candidates and recombination units. 
Given the number of variables involved, it was diffi  cult to 
make general comparisons among methods. Consider the 
simple example of half-sib selection versus S

1
–line selec-

tion assuming no dominance and equal environmental 
variances (environmental variance being the variance of 
errors on a family-mean basis):

1

2
A

S
2 2
A E

G i=
+

σ
Δ

σ σ
 [11a]

2
A

HS
2 2
A E

¼

¼
G i=

+

σ
Δ

σ σ
 [11b]

and

1

2 21
S A E4

2 2
HS A E

4
G

G

+
=

+

Δ σ σ
Δ σ σ  [11c]

Even under these simple conditions, the comparison 
between half-sib selection and S

1
 selection did not reduce 

to a constant. The ratio of expected responses was bounded 
by 4 as σ2

A
 approaches zero and 2 as σ2

E
 approaches zero; 

that is, response of S
1
 selection approaches four times the 

response of half-sib selection as heritability approaches zero 
and approaches two times the response of half-sib selection 
as heritability approaches one. If there was dominance, pre-
dicted response for S

1
–selection was

1

2 1
A 12

S
2 2 * 21 1
A D 1 2 E4 4

D
G i

D D

+
=

+ + + +

σ
Δ

σ σ σ
 [12]

If dominance was considered, there was no simple ratio 
to compare half-sib and S

1
 selection, particularly considering 

that D
1
 can be positive or negative. Such comparisons have 

occasionally led to optimistic predictions for inbred-prog-
eny selection, but the predictions have not been validated 
by empirical research (Comstock, 1964; Wright and Cock-
erham, 1986; Coors, 1999). Although general comparisons 
among methods were diffi  cult, the results shown in Table 3 
reveal some noteworthy patterns.

The coeffi  cient on additive genetic variance in the 
numerator of predicted gain, 2pθ

0
(1 + F

P
), depended only 

on the inbreeding level of the founder individual, P, of can-
didate families and did not depend on subsequent inbreed-
ing of candidate families, F

C
, or off spring, F

D
. Because the 

diff erence between predicted response in inbred off spring 
and predicted response in noninbred off spring was equal to 
the predicted change in inbreeding depression rate, additive 
genetic variance did not contribute to changes in inbreeding 
depression. This particular result provides some intuitive 
comfort in the underlying theory because it is not concep-
tually expected that additive variance (or additive eff ects) 

Table 5. Parameter values for obtaining the numerator, 2pσ
C,O

, of the predicted 

genetic gain equation for nine methods of recurrent selection described in Table 

4. General pedigree showing candidate families, parents of candidate families, 

and recombined individuals is shown in Fig. 1.

Type Method
Candidates† Offspring‡

θ
0

§ 2pθ
0Family g

C
h

C
Recombine g

R
h

R
p

Individual Mass–AP Individual 0 0 P 1 1 1 1⁄
4

1⁄
2

Individual Mass–BP Individual 0 0 P 1 1 2 1⁄
4

1

Outcross Half-sib–1 Half-sib 1 1 Half-sib 2 2 2 1⁄
16

1⁄
4

Outcross Half-sib–2 Half-sib 2 2 Half-sib 3 3 2 1⁄
64

1⁄
16

Outcross Half-sib–TT S
1
–topcross 2 1 S

1
–topcross 3 2 2 1⁄

16
1⁄

4

Outcross Half-sib–TS S
1
–topcross 2 1 S

1
2 1 2 1⁄

8
1⁄

2

Outcross Modifi ed ear to row Half-sib 1 1 Half-sib 2 2 1 1⁄
16

1⁄
8

Self Self-progeny–1 S
g:g+1

1 0 S
g:g+1

1 1 2 1⁄
4

1

Self Self-progeny–2 S
g:g+2

2 0 S
g:g+2

2 1 2 1⁄
4

1

†g
C
 = total number of generations of descent in candidate families from parent individual P

m
 (male) or P

f
 

(female); h
C
 = number of outcross generations in development of candidate families.

‡g
R
 = total number of generations from parent individual P

m
 or P

f
 and a recombined individual, R; h

R
 = number 

of outcross generations between individual P
m
 or P

f
 and recombined individual, R; p = parental control, i.e., 

number of selected parents of R.

§θ
0
 = coancestry between candidate individuals, C, and recombined individuals R if parent P

m
 or P

f
 is noninbred.
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should impact inbreeding depression. Whereas the coeffi  -
cient on additive variance was always zero in the numerator 
of predicted change in inbreeding depression rate, the coef-
fi cient on D

1
 was also identical for all methods with a value 

of 2pθ
0
(1 + F

P
)D

1
. However, the impact of the component 

D*
2
, which did vary among methods, must also be consid-

ered in predicted changes in inbreeding depression. Two 
broad categories of candidates emerge from Table 3: non-
inbred candidates, which have only the component D

1
 in 

predicted change in inbreeding depression; and inbred can-
didates, in which both D

1
 and D*

2
 appear in the numerator 

of predicted change in inbreeding depression rates.
The numerator of predicted change in inbreeding 

depression rate for selection among noninbred candidates, 
either individuals with F

P
 = 0 or half-sib families, was 

2pθ
0
(1 + F

P
)D

1
. The component D

1
 is a covariance that 

can be positive or negative. As outlined in the “Materi-
als and Methods” section, the expected value of noninbred 
individuals was equivalent to μ, and the expected value of 
inbred individuals was μ + Σ

i
p

i
δ

ii
, so that the expectation of 

inbreeding depression was defi ned here and by Cockerham 
(1983) as Σ

i
p

i
δ

ii
. If inbred individuals have lower values than 

noninbred individuals, such as for grain yield of many crop 
species, the value of expected inbreeding depression, Σ

i
p

i
δ

ii
, 

is negative according to this defi nition. Unfortunately, only 
three sets of published estimates of D

1
 in crop species, all 

in maize, are known to the author (Coors, 1988; Edwards 
and Lamkey, 2002; Wardyn et al., 2007). In all three sets of 
estimates, D

1
 tended to be negative for most traits, or near 

zero in some cases. If D
1
 is negative, a negative change in 

Σ
i
p

i
δ

ii
 is predicted. For grain yield in maize, for example, 

inbreeding depression is negative (inbred individuals have 
much lower yield than noninbred individuals), so a negative 
change in inbreeding depression results in a larger nega-
tive value; that is, selection among noninbred candidates 
increases the magnitude of inbreeding depression.

When candidates were inbred, including inbred indi-
viduals and lines derived by self-pollination, predicted 
change in inbreeding depression rate included both D

1
 and 

D*
2
 in the numerator of predicted gain. Because two com-

ponents were involved, one of which has been observed 
to be negative in the three populations studied previously 
in maize (Coors, 1988; Edwards and Lamkey, 2002; War-
dyn et al., 2007), general conclusions were diffi  cult to 
draw. A theoretical observation, however, was possible. 
The component D*

2
 (variance of homozygous dominance 

deviations; see materials and methods) aff ects response in 

inbred off spring (F
D
 > 0) but does 

not aff ect response in noninbred 
off spring. Thus, D*

2
 is a quan-

tifi cation of a form of heritable 
dominance but is only heritable 
with respect to selection among 
inbred individuals and response 

observed in inbred individuals. Classical dominance vari-
ance, σ2

D
, does not contribute directly to selection response 

in any form; thus, the proposition of heritable dominance is 
unique to selection among inbred progeny and response in 
inbred off spring in the improved population.

The classical breeders equation, R = Sh2, was read-
ily obtained from Tables 3, 5, and 6 with F

P
 = F

D
 

= F
C
 = 0 for selection among individuals with selection 

before pollination (parental control, p, of 2). A value for 
2pθ

0
 of 1 was obtained from Table 5 and a coeffi  cient of 

1 + F
P
 = 1 from Table 3 for σ2

A
, resulting in a numera-

tor of σ2
A
, and the genetic portion of the denominator 

of σ2
A
 + σ2

D
 was obtained from Table 6, resulting in 

( )2 2 2 2 2
A A D ER S Sh⎡ ⎤= + + =⎢ ⎥⎣ ⎦

σ σ σ σ , the classical breeders 

equation. Generalizing this equation to inbred candidates 
and inbred off spring produced four diff erent equations, 
summarized in Table 7.

The classical breeder’s equation is related directly to 
the concept of narrow-sense heritability, which in turn is 
tied directly to the concept of breeding value. Narrow-
sense heritability is defi ned formally as a ratio of additive 
genetic variance to phenotypic variance, but it can also be 
interpreted as the regression of breeding value on pheno-
typic value (Falconer and Mackay, 1996). Operationally, 
the numerator in selection response is the genotypic cova-
riance between off spring value and parent value, which 
is the numerator of the regression of off spring on parent 
or the numerator of the regression of breeding value on 
phenotypic value (Falconer and Mackay, 1996; Lynch and 
Walsh, 1998), at least for noninbred individuals. However, 
with inbreeding in either candidates or off spring, the cova-
riance between candidates and off spring is not equivalent 
to additive genetic variance, and hence, the regression 
of off spring on parent is not equivalent to regression of 
breeding value (by the classical defi nition) on phenotype. 
Thus, additional work may be needed to address the ques-
tion of how breeding value should be defi ned for inbred 
candidates and off spring of selected candidates.

In addition to the theoretical gap in quantitative 
genetics with regard to defi ning a concept of breeding 
value for inbred individuals, an additional need exists to 
design selection programs to reduce inbreeding depression. 
Based on published negative estimates of the covariance 
parameter D

1
, selection for outbred performance is likely, 

at least in some maize populations, to increase inbreeding 
depression rates. Additional work is needed to establish 
the generality of this expectation (increased inbreeding 

Table 6. Coeffi cients for individual variance components in the denominator of selection 

response for three different classes of candidates of selection.

Candidate σ2
A

σ2
D D

1
D

2
* H*

Individual 1 + F
P

1 − F
P

4F
P

F
P

F
P 

− F
P

2

Half-sib (1/2)2h(1 + F
P
) 0 0 0 0

Self 1 + F
P

(1 – F
C
)2/(1 – F

P
) 2(F

C
 + F

P
) F

P
 + (F

C
 – F

P
)2/2(1 – F

P
) F

P
[(1 – F

C
)2/(1 – F

P
)]
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depression with outbred selection) and if it is a general 
problem, to use the theory outlined here to develop more 
effi  cient strategies to reduce inbreeding depression.

CONCLUSIONS
It has been shown that three general forms of selection—
individual, half-sib, and self-progeny—are predicted to 
change the rate of inbreeding depression in randomly mated 
populations, regardless of the inbreeding level of candi-
dates. It was further established that selection among non-
inbred candidates in three maize populations is predicted to 
increase the magnitude of inbreeding depression based on 
published estimates of the covariance parameter D

1
. Finally, 

it was shown that additional work is needed in quantitative 
genetics to develop an appropriate defi nition of breeding 
value for inbred individuals and to develop improved selec-
tion methods to reduce inbreeding depression.

APPENDIX

Multivariate Normal 
Derivation of Genetic Gain

The exact eff ect of inbreeding on genetic gain when candi-
dates and off spring may have diff erent inbreeding levels was 
not inherently obvious on the basis of existing genetic gain 
equations. Hence, a genetic gain equation was rederived from 
the multivariate normal distribution to be certain that popu-
lation means of both candidates and off spring were properly 
accounted for. The goal was to predict the genotypic value, 
G

O
, of an off spring individual, R or D, based on observed 

phenotypes of candidate families (Fig. 1). A candidate family 
descended from the same parent, P

m
, as the male parent of 

individual R was referred to as the male candidate. The male 
candidate could consist of a family of individuals or a single 
individual. Likewise, the candidate family descended from 
the female parent, P

f
, of individual R was referred to as the 

female candidate. The variance of the vector of phenotypes 
and off spring genotypic value was

( )

( )

( )

2
m,OP m

2
f,OP f

2
m,O f,O G O

0

V 0

m

f

O

P

P

G

⎛ ⎞⎟⎜⎛ ⎞ ⎟⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ = ⎜⎟ ⎟⎜ ⎟ ⎟⎜⎜ ⎟ ⎟⎜⎟⎜ ⎟⎜⎟ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎟⎜ ⎟⎜⎝ ⎠

σ σ

σ σ

σ σ σ
 

[A1]

where P
m
 = estimated phenotype of male candidate, 

P
f
 = estimated phenotype of female candidate, G

O
 = geno-

typic value (unobserved) of off spring, σ2
P(m) 

= phenotypic 
variance of male candidate, σ2

P(f ) 
= phenotypic variance 

of female candidate, σ2
G(O)

 = genotypic variance of off -
spring, σ

m,o
 = covariance between male candidate pheno-

type and off spring genotypic value, and σ
f,o

 = covariance 
between female candidate phenotype and off spring geno-
typic value.

From the variance–covariance matrix of the vector of 
candidates and off spring, the conditional mean of G

O
 was 

(Searle, 1971, p. 47)

( ) ( )m,O f,O

2 2
P(m) P(f)

,O m f

O m m f f

E G P P

P P

⎡ ⎤ =⎢ ⎥⎣ ⎦

+ − + −
σ σ

μ μ μ
σ σ

 [A2]

where μΟ = expected genotypic value of off spring (with-
out selection); μ

m
 = expected phenotypic value of male 

candidates, that is, E[P
m
] = μ

m
; and μ

f
 = expected pheno-

typic value of female candidates, that is, E[P
f
] = μ

f
.

Equation [A2] is very general because male and female 
candidate families can have diff erent means, diff erent phe-
notypic variances, and diff erent covariances with off spring. 
Correct application of Eq. [A2] depends on a very clear 
understanding of Eq. [A1]. First, phenotypes of male and 
female candidates, P

m
 and P

f
 and their variances, σ2

P(m)
 and 

σ2
P(f )

, must correspond to each other. For example, if P
m
 

is a best linear unbiased predictor (BLUP) from a mixed-
model analysis, σ2

P(m)
 should be the total variance among 

BLUP estimators, ˆvar( )u . Further, the variance–covari-
ance matrix shows that phenotypes of male and female 
candidates were assumed to be independent, meaning 
that no genetic relationship was assumed between male 
and female candidates. Account of inbreeding level is also 
needed with respect to P

m
 and P

f
 as population means, μ

m
 

and μ
f
 need to be the mean of a population with the same 

inbreeding level as the male and female candidates.
Equation [A2] was simplifi ed by assuming that male 

and female candidates had identical pedigree structures so 
that the two terms were identical. It was also assumed that 
selection could be on either both parents of individual R, 
or only a single parent of individual R with one parent of 
R selected at random from the population. The number of 
parents selected, i.e., parental control, was quantifi ed with 
the term p which had values of 1 or 2 for number of selected 
parents. Replacing the “m” and “f” subscripts with a “C” for 
candidate and adding p for the number of selected parents:

( )C,O
C 0 C C2

P(C)

C,O C,O
0 02

PP(C)

OE G x p x

pS pi

⎡ ⎤ = + −⎢ ⎥⎣ ⎦

= + = +

σ
μ μ

σ

σ σ
μ μ

σσ
 

[A3]

where σ
C,O

 = covariance between candidates and off spring, 
σ2

P(C)
= phenotypic variance of candidates, x–

C
= mean 

Table 7. Numerators and denominators for selection among 

individuals.

Numerator
Denominator

F
P

F
D
 = 1 F

D
 = 0 Diff

0 σ2
A
 + D

1
σ2

A
D

1 σ2
A
 + σ2

D
  + σ2

E

1 2σ2
A
 + 4D

1
 + D*

2
2σ2

A
 + 2D

1
2D

1
 + D*

2 2σ2
A
 + 4D

1
 + D*

2
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phenotype of candidates, S = selection diff erential, and 
i = standardized selection diff erential.

Equation [A3] shows explicitly the relationship between 
the mean of off spring, μ

0
, and the mean of candidates, μ

C
, 

in predicted genetic gain. The predicted mean of off spring 
with selection is predicted as a deviation from the mean of 
off spring without selection, μ

0
, and a deviation of candi-

dates from the candidate population mean, x–
C 

–
 
μ

C
. Equa-

tion [A3] also shows substitutions of the selection diff erential 
S = x–

C 
–

 
μ

C
, and the standardized diff erential, i – S/σ

P
. 

Equation [A3] could be expressed as a predicted change in 
genetic value, ΔG, as in classical genetic gain equations:

( )

C,O C,O

2
P CP(C)

G pS piΔ = =
σ σ

σσ
 [A4]

The limitation with an equation expressed in terms 
of ΔG with candidates and off spring possibly at diff er-
ent inbreeding levels is that an equation for ΔG leaves the 
impact of inbreeding through changes in off spring and can-
didate population means less explicit in the fi nal equation.

Recursion Formulas for Descent Measures
For individuals X and D, let φ

DX
 be a generic descent mea-

sure for any number of alleles in X and a single allele in D 
and let φ

XD̈
  be a generic descent measure for any number 

of alleles in X and two alleles in D. Consider a pedigree 
in which individual D is a descendant of A with g genera-
tions between D and A. Assuming that D is related to X 
only through its relationship to individual A, simplifi ed 
expressions were obtained for the relationship between D 
and X as functions of the relationship between A and X.

If individual D was derived exclusively by g genera-
tions of self-pollination, expansion from generation g to 
generation g – 1 of a generic descent measure that was a 
function of a single allele in individual D, φ

DX
, took the 

following form (Cockerham, 1971):

( )g-1 g-1 g-1

1
 XD  XD  XD  XD2= + =φ φ φ φ

By induction, the expansion was carried backward 
through selfi ng generations to the original ancestor, A:

φ
XD

 = φ
XA

 [A5]

The generic descent measure in Eq. [A5] was applied 
to specifi c measures that were functions of a single allele 
in D, namely θ

XD
 = θ

XA
 and γ

ẌD
 = γ

ẌA
.

In individual D was the result of an outcross, i.e., one 
gamete was randomly sampled from the base population, 
the expansion from generation g − 1 to generation g was

( )-1 -1 -1

1 1
 XD  XD  Xr  XD2 2g g g

= + =φ φ φ φ , where 
-1 Xrg

φ = descent

measure for individual X and a gamete randomly sampled 
from the base population, 

-1 Xr 0
g

=φ .
If generation g  – 1 also resulted from an out-

cross, expansion to generation g – 2 produced 

-1 -2

1 1
 XD  XD  XD2 4g g

= =φ φ φ .

By induction, for g generations of outcrossing (with 
no loops and no other relationships in the pedigree): 

( )1
 XD  XA2

g
=φ φ .

By Eq. [A5], generations of selfi ng between individuals 
A and D had no eff ect on the expansion from D to A for a 
measure that is a function of a single allele in D. Hence, to 
generalize for pedigrees with a mixture of self-pollination 
and outcrossing, the number of outcross generations, h, 
was substituted for the total number of generations:

( )=φ φ1
 XD  XA2

h
 [A6]

For descent measures that were functions of two alleles 
in D, γ

XD̈
, Δ

Ẍ+D̈
, Δ

Ẍ·D̈
, δ

ẌD̈
, and F

D
, if D was an outcross, 

any measure that was a function of two alleles in D is zero. 
For the case of self-pollination, expansion to generation g – 1

produced ( ) ( )-1-1 -1

1 1
 XD  XA2 2 XD  XD  XDgg g g

= + = +φ φ φ φ φ .

This expression arose from the fact that the two alleles in 
D

g
 have a 1/2 probability of being copies of two diff erent 

alleles in D, and a 1/2 probability of being two copies of 
the same allele in the previous generation, in which case 
by Eq. [A5], 

-1 XDg
φ  can be expanded immediately all the 

way back to individual A by substituting φ
XA

 (Cocker-
ham, 1971, 1983). Multiplication by two and subtraction 
of φ

XA
 produced 

-1
 XA  XA XD  XD

2 2
g

− = −φ φ φ φ , which was

rearranged to obtain ( ) ( )
-1

 XA  XA XD  XD
1 2

g g
− − =φ φ φ φ .

The numerator and denominator diff er only in gen-
erational subscripts in the terms  XDg

φ  and 
-1 XDg

φ  so that 
any value can be substituted for the subscripts g in the sub-
scripts of  XDg

φ  and 
-1 XDg

φ . The value g – 1 was substituted 

for g to obtain ( ) ( )
-1 -2

 XA  XA XD  XD
1 2

g g
− − =φ φ φ φ , which

was multiplied by the original expression to obtain 

( )( )-1

-1 -2

 XA  XA XD  XD

 XA  XA XD  XD

1 2 1 2
g g

g g

⎛ ⎞⎛ ⎞− −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟=⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟− −⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

φ φ φ φ

φ φ φ φ

The term 
-1

 XA XDg
−φ φ  canceled from 

both numerator and denominator, resulting in

( ) ( )
-2

 XA  XA XD  XD
1 4

g g
− − =φ φ φ φ . By induction, if indi-

vidual D was derived by g generations of self-pollination, 
the general transition to expand from D to A was

g

g-g

 XA XD  XA XD

 XA  XA XD  XA

1

2

g⎛ ⎞− ⎛ ⎞⎟⎜ ⎛ ⎞− ⎟⎟ ⎜⎜ ⎟⎜⎟⎟ ⎜= =⎜ ⎟⎟ ⎜⎟ ⎜ ⎟⎜ ⎟⎟ ⎜⎟ ⎟ ⎝ ⎠⎜− −⎜ ⎟ ⎝ ⎠⎟⎜⎝ ⎠

φ φ φ φ
φ φ φ φ

where D
g
 = D and D

g-g
 = A.

The generic transition was applied to all descent mea-
sures that were functions of two alleles in individual D, 
γ

XD̈
, Δ

Ẍ+D̈
, Δ

Ẍ·D̈
, δ

ẌD̈
, and F

D
, by substituting each of the 

individual measures for φ
XD̈

. In the fi nal transition equa-
tion, the measure =φ φ

- XD  XAg g
 represents a descent mea-

sure that is carried through every generation of expansion, 
so that the same descent measure was substituted for φ

XÄ
 

as for φ
XD̈

 in the generic transition equation. For example, 
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if obtaining a transition for expansion of γ
XD̈

  by substitut-
ing γ

XD̈
  for φ

XD̈
 , γ

XÄ
  is substituted for φ

XÄ
. The term φ

XA
 

in the generic transition equation arose for the case when 
the two alleles in generation g were identical copies of the 
same allele in generation g – 1. Hence, for a particular 
transition equation, the descent measure to substitute for 
φ

XA
 was identifi ed from the single generation expansion 

from generation g to generation g – 1 using expressions 
and methods from Cockerham (1971). Specifi c substitu-
tions for all three generic terms in the transition equation 
are summarized in Table A1.

The general transition was applied to the inbreeding 
coeffi  cient, F

D
, and then to remaining measures to obtain 

further simplifi cation:

 XA XD D D

 XA XA A A

1 11

2 1 1

g
F F

F F

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞− − −⎟ ⎟ ⎟⎜ ⎜ ⎜⎟⎜⎟ ⎟ ⎟⎜ ⎜ ⎜= = =⎟⎟ ⎟ ⎟⎜⎜ ⎜ ⎜⎟⎟⎟ ⎟ ⎟⎜⎟ ⎝ ⎠ ⎟ ⎟⎜ ⎜ ⎜− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

φ φ
φ φ

which after algebraic rearrangement resulted in

( ) ( ) XA D A  XA D
 XD

A

1

1

F F F

F

− + −
=

−

φ φ
φ  [A7]

Variance of Family Means
The genotypic variance of a family mean was defi ned as 
the variance of the average genotypic value of all family 
members. Given a vector of observations, x, with the ith 
observation having a variance σ2

xi 
and covariance between 

elements i and j of σxi,xj
, the variance of the average of ele-

ments in x is

2
,

1 1
Var

i i jx x x

n

n n n

⎛ ⎞ −⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑x

σ σ

The covariance between the average values of vectors 
x and y, with the covariance between any element within 
vectors being σxi,yj 

is

( )2

21
, ,Cov ,

i j i jx y x yn
n

n n

⎛ ⎞⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ ∑x y

σ σ

The variance and covariance formulas for averages 
were applied recursively to obtain the variance of the aver-
age genotypic value of a candidate family for predicted 
selection response. The genotypic covariance between can-
didate individuals in generation t + i with last common 
ancestor in generation t was denoted C

t,t+i
. If all individu-

als within a candidate family were direct descendants of 
a single individual (either half-sibs or full-sibs derived by 
self-pollination), the variance of the mean genotypic value 
of the family was

2 1
G(C) 1, 1 , 1

1 1

11
t t t t

n
C C

n n
+ + +

−
= +σ  [A8]

The genotypic variances and covariances in the expres-
sion for the variance of mean genotypic values were 
expressed with respect to the base population; for example, 
C

t+1,t+1
 was not assumed to be the variance within candidate 

families but was total genotypic variance among individuals 
in generation t + 1. If two generations of reproduction (by 
either outcrossing to produce half-sibs, selfi ng, or a combi-
nation of outcrossing and selfi ng) were required, the two 
formulas were applied recursively to obtain

2
G(C)

2 1
2, 2 1, 2 , 2

1 2 2 1

1 11 1
t t t t t t

n n
C C C

n n n n
+ + + + +

=

⎛ ⎞− −⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜⎝ ⎠

σ

 [A9]

where n
1
 = number of off spring sampled in t + 1, and n

2
 

= number of off spring sampled generation t + 2 from each 
individual in generation t + 1.

A third recursion was applied for the case in which 
three generations were required to obtain adequate quan-
tities of seed

2
G(C)

3 2
3, 3 2, 3 1, 3

1 2 3 3 2

1
, 3

1

1 11 1 1

1

t t t t t t

t t

n n
C C C

n n n n n

n
C

n

+ + + + + +

+

=

⎡ ⎤⎛ ⎞− −⎟⎜⎢ ⎥⎟+ +⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
−

+

σ

 [A10]

where n
1
 = number of individuals sampled in generation t, 

n
2
 = number of individuals sampled in generation t + 1, and 

n
3
 = number of individuals sampled in generation t + 2.

Table A1. Summary of expansions of generic descent mea-

sure φ
XD̈

  from individual D to individual A for Eq. [A7].

φ
XD̈ Expand D† Expansion formula‡ φ

XÄ
φ

XA

γ
XD̈ ( )γ

g-1 g-1X D D ( )+γ θ
g-1g-1

1
 XD2 XD

 γ
XÄ

θ
XA

δ
Ẍ D̈ ( )δ

g-1 g-1X D D ( )+δ γ
g-1 g-1

1
2  XD XD

δ
ẌÄ

γ
ẌA

Δ
Ẍ·D̈ ( )Δ i g-1 g-1 X D D ( )+Δ i g-1

1
X2  X D

F
Δ

Ẍ·Ä
1

Δ
Ẍ+D̈ ( )+

Δ
g-1 g-1 X D D ( )+ +Δ γ

g-1 g-1

1
2  X D XD

Δ
Ẍ+Ä

γ
ẌA

F
D ( )g-1 g-1D D

F ( )+
g-1

1
D2 1F

F
A

1

†Individual D was expanded from generation g to generation g − 1.

‡Specifi c expressions for descent measures when two random alleles are sampled 

from a single individual were obtained from Cockerham (1971).
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